
Lecture 2:
Conditionals, Functions,
Strings, Lists, & Loops

Finlay Maguire (finlay.maguire@dal.ca)

TAs: Ehsan Baratnezhad (ethan.b@dal.ca); Precious Osadebamwen
(precious.osadebamwen@dal.ca)

mailto:finlay.maguire@dal.ca
mailto:ethan.b@dal.ca
mailto:precious.osadebamwen@dal.ca

Schedule tweaks: let’s get through the basics
so we can get to more fun stuff

Next week: Modules, Notebooks & Reproducible Research
Week after: Functional programming

Overview

● Booleans and conditionals to enable “branching”
● Introduction to functions
● Strings (encoding, formatting, escaping, multi-line, indexing/slicing)
● Lists (creating, lists of lists, accessing elements in a list or a string, slices)
● Tuples and Mutability
● Aliasing vs Copying
● For loops (defining, break, continue, range, zip)

Boolean Types are True or False

>>> 3 == 1+2

True

>>> 1+2 == 3

True

>>> 42 == "spam"

False

>>> 42 > 5

True

>>> “A” != “G”

True

>>> not “A” == “G”

True

Relational Operators
== is equal to
!= is not equal to
> is greater than
< is less than
>= is greater than or equal to
<= is less than or equal to

x = 4
3 < x and x < 7 == 3 < x < 7Operations can be chained:

Booleans have special operators (cast to integers otherwise)

>>> True == 1

True

>>> False == 0

True

>>> True + True

2

>>> True + False

1

>>> True * False

0

>>> True and False

False

>>> False or False or False

False

>>> True and not False

True

Boolean Operators
● and: True if both are True
● or: True if at least one is True
● not: True if argument is False

Booleans have some special functions

>>> any((True, False, True))
True

>>> any((False, False))

False

>>> all((True, True, True))

True

>>> all((True, False, True))

False

any(L) checks if at least one is True

all(L) checks if all are true

Why are booleans useful? They enable
branching!

Booleans enable conditional execution

Code so far has been a simple recipe:
do assignment 1

do assignment 2

do assignment 3

…

pass course

Real-world/problems more complex:

https://betterprogramming.pub/5-alternatives-to-if-statements-for-conditional-branching-6e8e6e97430b

Conditionals: boolean expressions and if

if CONDITION:

BODY1

x = 42 * 101

if x == 4242:

print(“My Office”)

“My office”

x = 42 * 102

if x == 4242:

print(“My Office”)

…

Iff condition is true then do the code in the “body”.

Body in python is delineated with a : (colon) and a
“whitespace” indentation

Major “gotcha” in python is messing up this
whitespace

Conditionals: more than 1 option if and else

if CONDITION:

BODY1

else:

BODY2

x = 4243

if x == 4242:

print(“My Office”)

else:

print(“Not mine”)

“Not mine”

If condition is true then run the code in the
BODY1 otherwise run the code in BODY2.

Whitespace is still (and in python always will be)
important

Conditionals: more than 2 options: if, elif, and else

if CONDITION1:

BODY1

elif CONDITION2:

BODY2

else:

BODY2

x = 4243

if x == 4242:

print(“My Office”)

elif x == 4243:

print(“Old Office”)

else:

print(“Not mine”)

“Old Office”

If CONDITION1 is true then run BODY1,
otherwise if CONDITION2 is true run BODY2
otherwise run BODY3.

Conditions: order matters.

 1 if hour >= 2 and hour <= 9:
 2 print("Sleep")
 3 elif hour <= 17:
 4 print("In class")
 5 elif hour <= 20:
 6 print("Hang out")
 7 else:
 8 print("Do Assignment")

if hour >= 2 and hour <= 9:
print("Sleep")

elif hour <= 20:
print("Hang out")

elif hour <= 17:
print("In class")

else:
print("Do Assignment")

hour = 11

Indentation (& Tabs vs Spaces in Python)

PEP8: 4 spaces per indentation
Be consistent or you will get errors

Branching means lots of repeated code
UNLESS we define and use functions

Conditionals and functions use similar syntax

def dbl(x):

return 2 * x

>>> dbl(5)

10
def function_name(parameters):

function body

return

def dbl(input_val):

y = 2 * input_val

return input_val

Docstrings are important parts of functions

def dbl(x):

“””This function takes a number

x as input and returns 2 * 2”””

return 2 * x

Functions can call other functions

def quad(x):

return 4 * x

def quad(x):

return dbl(dbl(x))

Functions can have multiple inputs

def myFunc(x, y):

“””Returns x + 42 * y”””

return x + 42 * y

Let’s talk about strings a bit more:
Strings are useful and modern python hides a

lot of complexity

Computers only do numbers -> how does text work?

Text is encoded as a number.

ASCII table (128 options)

More characters => more
numbers

Unicode v16 (154,998
options) - python uses UTF-8
by default

String additions: concatenation

>>> food = "spam"

>>> food

'spam'

>>> food + "!!!"

'spam!!!'

>>> food

'spam'

>>> food = food + "ityspam"

>>> food

'spamityspam'

String formatting/interpolation
>>> x, y = 2, 3

>>> "x = %s, y = %s" % (x, y)

'x = 2, y = 3'

>>> "x = {}, y = {}".format(x, y)

'x = 2, y = 3'

>>> "x = {1}, y = {0}".format(y, x)

'x = 2, y = 3'

>>> f'x + y = {x + y}'

'x + y = 5'

>>> '{x + y = }'

'{x + y = }'

>>> f'{x} / {y} = {x / y:.3}'

'2 / 3 = 0.667'

% = old way likely to be remove
.format = newer way
F-string = newest & cleaner

>>> print(“a” + “b”)
ab
>>> print(“a” + “\n” +
“b”)
a
b
>>> print(“a\nb\nc”)
a
b
c

Special characters and escaping them

>>> print(“a \\n a”)
a \n b

>>> print(“a \” in str”)
a “ in str

>>> print(f”{1+2} and {{“)
3 and {

Many built-in string operations

> s = 'this is a
string'

> s.capitalize()

'This is a string'

> s.title()

'This Is A String'

> s.upper()

'THIS IS A STRING'

> s.count('i')

3

> s.title().swapcase()

'tHIS iS a sTRING

> s.removeprefix('this is ')

'a string'

> s.removesuffix(' string')

'this is a'

> s.replace('is', 'IS')

'thIS IS a string'

Using strings: length and index

>>> dna_seq = "AATGCCGTGCTT"

>>> len(dna_seq)

12

>>> dna_seq[0]

'A'

>>> dna_seq[3]

'G'

>>> dna_seq[20]

IndexError: string index out
of range

https://www.cs.hmc.edu/~cs5grad/cs6/slides2021/lec0_2021.pdf

First element in a string is at the 0
position - dna_seq points at a bit of
memory and then the index is
“offset” in memory

string[index]

Using strings: length and index
>>> dna_seq = "AATGCCGTGCTT"

>>> dna_seq[0:4]

'AATG'

>>> dna_seq[3:7]

'GCCG'

>>> dna_seq[1:]

'ATGCCGTGCTT'

>>> dna_seq[:4]

'AATG'

>>> dna_seq[10:42]

'TT'

string[start : stop]

start is just index (inclusive)
stop is a < not <= (exclusive)

“from start up to stop”
not
“from start up to and including stop”

string[4] == string[4:5]
https://www.cs.hmc.edu/~cs5grad/cs6/slides2021/lec0_2021.pdf

Indexing and slicing: negative indices

 # 111

012345689012

>>> alphabet = "abcdefghijkl"

>>> alphabet[1:9:3]

'beh'

>>> alphabet[5:0:-1]

'fedcb'

string[start : stop : increment]

from start up to stop by increment

string[2:6] == string[2:6:1]

Strings are just a list of characters

Lists are an ordered collection of data

primes = [2,3,5,7,11]

biologists = [”McClintock", ”Blackburn", ”Franklin"]

lists can contain multiple types

L = [2, "turtle", 11]

lists can include lists

>>> M = [2, "turtle", 11, ["spam", "spamity", "spam"]]

Explicitly converting a list to a string

>>> x = “this is a string”

>>> list(x)

[‘t’, ‘h’, ‘i’, ‘s’, ‘ ‘, ‘i’, ‘s’, ‘’, ‘a’, ‘’, ‘s’, ‘t’,
‘r’, ‘i’, ‘n’, ‘g’]

>>> x.split()

[“this”, “is”, “a”, “string”]

>>> x.split(‘a’)

['this is ', ' string']

Indexing and slicing the same as strings

 0 1 2 3

>>> M = [2, "turtle", 11, ["spam", "spamity", "spam"]]

>>> len(M)

4

>>> M[2]

11

>>> M[3]

['spam', 'spamity', 'spam']

>>> M[3][0]

???

>>> M[2:]

???

Addition and multiplication for lists

>>> my_list = [42, 47, 23]

>>> new_list = my_list + 100

TypeError: can only concatenate
list (not "int") to list

>>> new_list = my_list + [100]

>>> new_list

[42, 47, 23, 100]

>>> my_list

[42, 47, 23]

>>> new_list = my_list * 2

>>> new_list

[42, 47, 23, 42, 47, 23]

Special functions for adding elements to lists

Operators like “+” return a new value
but don’t ASSIGN it to the original
variable.

>>> x = 5

>>> x + 3

8

>>> x

5

Extend/Append Modify the Variable

>>> L = [6, 3]

>>> L

[6, 3]

>>> L + [9,11]

[6, 3, 9, 11]

>>> L

[6, 3]

>>> L.extend([9,11])

>>> L

[6, 3, 9, 11]

Where strings and lists differ: mutability.
>>> L = [29, 47, 17, 23]

>>> L

[29, 47, 17, 23]

>>> L[1] = 42 # change AKA mutate the list at index 1

>>> L

[29, 42, 17, 23] # lists are mutable

>>> S = "spam"

>>> S[1] = "c" # strings are immutable - you can’t change directly

TypeError: 'str' object does not support item assignment

>>> S = “scam” # need to assign a new string overwriting the variable

Where strings and lists differ: mutability.
>>> L = [29, 47, 17, 23]

>>> L.append(10)

>>> L

[29, 47, 17, 23, 10]

>>> S = "spam"

>>> S.append(“!”) # strings are immutable - you can’t append

AttributeError: 'str' object has no attribute 'append'

>>> S = S + “!” # need to assign a new string overwriting the variable

>>> S

“spam!”

Immutable lists: tuples

> (1, 2, 3)

(1, 2, 3)

> ()

()

> (42)

42

> x = (3, 7)

> x

(3, 7)

> x = 4, 6

> x

(4, 6)

> x[1] = 42

TypeError: 'tuple' object does not
support item assignment

> (42,)

(42,)

> 1, 2

(1, 2)

> 42,

(42,)

Eagle-eyed amongst you: I used these when explain any and all with booleans

Aliases: a common python gotcha

>>> a = [13, 27, 7, 42]
>>> b = a
>>> b
[13, 27, 7, 42]
>>> a[2] = 12
>>> b
[13, 27, 12, 42]
>>> b[2] = ‘a’
>>> a
[13, 27, ‘a’, 42]

When compound +
mutable:

b is assigned to a
NOT the value of a

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

If you want y to be the value of x you need to COPY

More complicated
nested objects need
copy.deepcopy

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

How do I avoid writing lots of code to do
something to every item in a list?

Loops - in python they can basically just be english!

list_of_numbers = [1,2,4]

for number in list_of_numbers:

print(number + 1)

for character in 'abc':

print(character + “!”)

● For every element in a sequence
execute a body of code:

 for var in sequence:
 body

● Sequences can e.g. be lists,
strings, ranges

Loops only go over top layer in nested lists by default

nested_list = [‘a’, ‘b’, [1, 2, 3]]

for item in nested_list:

print(item)

if type(item) == list:

for x in item:

print(x)

‘a’

‘b’

[1, 2, 3]

1
2
3

Loops can be nested just like lists and conditionals

Break and continue can be used to control loops

Break lets us escape from the loop Continue goes to next iteration

for x in [‘a’, ‘b’, ‘c’]:
if x == ‘b’:

break
print(f”In-loop {x}”)

print(‘Done’)

‘In-loop a’
‘Done’

for x in [1, 10, 30]:
print(x)
if x < 2:

continue
print(f”{x} + 1”)

1
10
10 + 1
30
30 + 1

Overview

● Conditionals (if, elif, else) allow branching
● Functions let us define code once and then run it many times
● Strings are complicated by python makes life easier (including built-in

functions)
● Strings can include variables with f-strings and special characters using

escape sequences.
● Lists are a mutable ordered collection of data (tuples are immutable).
● Lists and strings have similar indexing/slicing but differ in mutability
● Aliasing vs copying is an easy way to make mistakes in python
● For loops let us do something for every item in a list or string

